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Constrained TpV minimization for enhanced
exploitation of gradient sparsity: application to CT

image reconstruction
Emil Y. Sidky, Rick Chartrand, John M. Boone, and Xiaochuan Pan

Abstract—Exploiting sparsity in the image gradient magnitude
has proved to be an effective means for reducing the sampling
rate in the projection view angle in computed tomography
(CT). Most of the image reconstruction algorithms developed
for this purpose solve a nonsmooth convex optimization problem
involving the image total variation (TV). The TV seminorm is the
`1 norm of the image gradient magnitude, and reducing the `1
norm is known to encourage sparsity in its argument. Recently,
there has been interest in employing nonconvex `p quasinorms
with 0 < p < 1 for sparsity exploiting image reconstruction,
which is potentially more effective than `1 because nonconvex
`p is closer to `0 – a direct measure of sparsity. This work
develops algorithms for constrained minimization of the total p-
variation (TpV), `p of the image gradient. Use of the algorithms
is illustrated in the context of breast CT – an imaging modality
which is still in the research phase and for which constraints
on X-ray dose are extremely tight. The TpV-based image recon-
struction algorithms are demonstrated on computer simulated
data for exploiting gradient magnitude sparsity to reduce the
projection view angle sampling. The proposed algorithms are
applied to projection data from a realistic breast CT simulation,
where the total X-ray dose is equivalent to two-view digital
mammography. Following the simulation survey, the algorithms
are then demonstrated on a clinical breast CT data set.

I. INTRODUCTION

Much research for iterative image reconstruction (IIR) in
computed tomography (CT) has focused on exploiting gradient
magnitude image (GMI) sparsity. Several theoretical investi-
gations have demonstrated accurate CT image reconstruction
from reduced data sampling employing various convex opti-
mization problems involving total variation (TV) minimization
[1], [2], [3], [4], [5], [6]. Many of these algorithms have been
adapted to use on actual scanner data for sparse-view CT
[7], [8], [9], [10], [11], [12] or gated/dynamic CT [7], [13],
[14], [15], [16], [17]. While the volume of work on this topic
speaks to the success of the idea of exploiting GMI sparsity,
TV minimization is not the most direct method for taking
advantage of this prior.

The most direct measure of sparsity is totaling the number
of nonzero pixels in an image. Mathematically, the number of
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nonzero components of a vector can be expressed as the `0
norm, which is understood to be the limit as p goes to zero
of the pth power of the `p norm:

‖v‖pp ≡
∑

i

|vi|p. (1)

As of yet, no algorithms have been developed for CT IIR
that minimize `0 of the GMI, and sparsity exploiting IIR has
focused on minimizing `1 of the GMI – also known as TV.
Logically, p < 1 should improve on exploitation of GMI
sparsity for sampling reduction, but optimization problems
involving `p for 0 < p < 1 are nonconvex and may have multi-
ple local minima. Recent theoretical results, however, do show
that values of p leading to nonconvex optimization problems
may be practical for compressive sensing applications [18],
[19], [20].] For exploiting GMI sparsity in particular accurate
solvers have been developed for minimization of the total p-
variation (TpV) using reweighting techniques [21].

For tomographic X-ray imaging, the idea of exploiting
nonconvex `p norms has been applied to perfusion imaging
[22] and metal artifact reduction [23]. We have investigated the
use of TpV minimization in the context of IIR for digital breast
tomosynthesis [24]. While these works show potential applica-
tions, they do not characterize quantitatively how much more
sampling reduction is made possible by exploiting nonconvex
TpV minimization as compared with convex TV minimization.

Despite the interest in TV-based IIR for CT over the
past few years, the undersampling allowed for CT by TV
minimization has only recently been quantified [5]. The aim
of this article is to develop accurate solvers for nonconvex
TpV minimization and to quantify further reduction of the
number of projections needed. Although the primary interest
here is in ideal theoretical image recovery, we also apply the
same algorithms to a realistic simulation of a breast CT in
order to demonstrate that the presented algorithms are robust
against noise and may prove useful for actual use with CT
scanner data. Section II provides theoretical motivation for
nonconvex optimization; Section III presents the IIR algo-
rithms for TpV minimization; Section IV discusses algorithm
parameter choices; Section V surveys image reconstruction on
ideal CT simulated data to test phantom recovery as a function
of number of views and value of p; Section VI presents image
reconstruction by nonconvex TpV minimization on a realistic
breast CT simulation; and finally, Section VII applies one of
the proposed algorithms to clinical breast CT data.
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II. MOTIVATION FOR NONCONVEX OPTIMIZATION FOR
EXPLOITING SPARSITY IN IIR

We write the CT data model generically as a linear system

g = X f , (2)

where f ∈ RN is the image vector comprised of voxel
coefficients, X ∈ RM×N is the system matrix generated by
projection of the voxels, and g ∈ RM is the data vector
containing the estimated projection samples. The model can
be applied equally to 2D and 3D geometries, and we note that
there are many specific forms to this linear system depending
on sampling, image expansion elements, and approximation of
continuous fan- or cone-beam projection.

We focus on CT configurations with sparse angular sam-
pling, where the sampling rate is too low for Eq. (2) to have a
unique solution. In this situation, there has been much interest
in exploiting GMI sparsity of the object to narrow the solution
space and potentially obtain an accurate reconstruction from
under-sampled data. The formulation of this idea results in a
nonconvex constrained optimization:

f◦ = arg min
f
‖(|∇f |)‖0 such that g = X f , (3)

where the argument of the `0-norm is the voxel-wise magni-
tude of the image spatial gradient, and ∇ ∈ RdN×N represents
a discrete gradient operator with spatial dimension d = 2 or
3. In order to make clear the distinction between a spatial-
vector valued image, such as an image gradient, and a scalar
valued image, we employ a vector symbol for the former
case. For example, let ~z = ∇f be the gradient of an image,
where we stack the partial-derivative image vectors, so that
~z ∈ R2N or ∈ R3N depending on whether we are working on
2 or 3 dimensions, respectively. Also, we use the absolute
value symbol to convert a vector-valued image to a scalar
image by taking the magnitude of the spatial-vector at each
pixel/voxel. For example, m = |~z| is a scalar image indicating
the spatial-vector magnitude of ~z. We define multiplication,
division, and other operations on vectors (other than matrix
multiplication) by performing the operation separately for each
component. Finally, we define multiplication between a scalar
image m and spatial-vector image ~z; ~z′ = m~z by scaling
the spatial-vector pixelwise/voxelwise, i.e., ~z′i = mi ~zi for
i = 1, . . . , N . The `0-norm in Eq. (3) counts the number
of non-zero components in the argument vector; and g is the
available projection data. In words, this optimization seeks the
image f with the lowest GMI sparsity while agreeing exactly
with the data.

The optimization problem in Eq. (3) does not lead directly to
a practical image reconstruction algorithm, because, as of yet,
no large scale solver is available for this problem. Also, the
equality constraint, requiring perfect agreement between the
available and estimated data, makes no allowance for noise or
imperfect physical modeling of X-ray projection. In working
toward developing a practical image reconstruction algorithm,
different relaxations of Eq. (3) have been considered. One such
relaxation is

f◦ = arg min
f
‖(|∇f |)‖pp such that ‖g −X f‖2 ≤ ε, (4)

where the `0-norm is replaced by the `p-norm, and the data
equality constraint is relaxed to an inequality constraint with
data-error tolerance parameter ε. An important strategy, which
has been studied extensively in compressive sensing [25], [26],
is to set p = 1, which corresponds to TV minimization.
This, on the one hand, maintains some of the sparsity seeking
features of Eq. (3) and, on the other hand, leads to a convex
problem, which has convenient properties for algorithm devel-
opment. For example, a local minimizer is a global minimizer
in convex optimization.

Another interesting option for GMI sparsity-exploiting im-
age reconstruction is to consider Eq. (4) for 0 < p < 1. Such
a choice for p leads to nonconvex optimization, which can
allow for greater sampling reduction than the p = 1 case
while maintaining highly accurate image reconstruction. These
gains intuitively stem from the fact p < 1 is closer to the
ideal sparsity-exploiting case of p→ 0; the catch, however, is
on the algorithmic side where one has to deal with potential
local minima, which are not part of the global solution set.
Despite this potential difficulty, practical algorithms based
on this nonconvex principle are available [20], [27], and
gains in sampling reduction for various imaging systems have
been reported for both simulated and real data cases. For X-
ray tomography, use of this nonconvex strategy has shown
promising results [24], [28], but the algorithms proposed in
those works for CT are only motivated by the optimization
problem in Eq. (4) and are not accurate solvers of this problem.
An accurate solver is important for theoretical studies of CT
image reconstruction with under-sampled data and may also
aid in developing algorithms for limited-data tomographic
devices.

III. ALGORITHM FOR CONSTRAINED TpV MINIMIZATION

In order to address constrained minimization problems such
as the one in Eq. (4), the optimization problem is frequently
converted to unconstrained minimization essentially by con-
sidering the Lagrangian of Eq. (4):

f◦ = arg min
f
‖(|∇f |)‖pp + µ‖g −X f‖22. (5)

This approach is employed often even for the convex case
of p ≥ 1. Here, we derive an algorithm for solving Eq. (4)
directly by employing the Chambolle-Pock (CP) framework
[29], [30]. The strategy, illustrated in a simple one dimensional
example in Appendix A, is to convert TpV minimization
to a convex weighted TV minimization problem, and write
down the CP algorithm which solves the convex weighted
problem. Once we have this algorithm, reweighting [31],
[32] is employed to address the original TpV minimization
problem. Maintaining the constrained form of the nonconvex
minimization problem in Eq. (4) has two physically-motivated
advantages: (1) the data-error tolerance ε has more physical
meaning than the regularization parameter µ of the correspond-
ing unconstrained problem of Eq. (5) [2], [33], and (2) this
form is more convenient for assessing p-dependence of the
reconstructed images because changing p does not alter the
data fidelity of the solution.
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We start by rewriting Eq. (4), using an indicator function to
encode the constraint:

f◦ = arg min
f

{
‖(|∇f |)‖pp + δB2(ε)(X f − g)

}
. (6)

The indicator function is defined by

δS(x) =

{
0 x ∈ S

∞ x /∈ S
, (7)

and the ball Bp is defined as the following set:

Bp(r) ≡ {x such that ‖x‖p ≤ r}. (8)

We also define an “ellipsoidal” set E∞:

E∞(r) ≡ {x such that ‖x/r‖∞ ≤ 1}, (9)

where ‖v‖∞ = max{|v1|, . . . , |vN |} denotes the maximum
norm. For p < 1, Eq. (6) is not a convex problem, and
as a result the CP algorithm cannot be applied directly to
it. Following the reweighting strategy, we alter the objective
function and introduce a weighted convex term to replace the
nonconvex one:

f◦ = arg min
f

{
‖(w|∇f |)‖1 + δB2(ε)(X f − g)

}
. (10)

A CP algorithm for this convex problem is straightforward
to derive, which will be done in Sec. III-A. To obtain an
algorithm for the nonconvex problem in Eq. (6), we use the
same algorithm solving Eq. (10) except that we alter the
weights at each iteration by

w =

(√
η2 + |∇f |2

η

)p−1

, (11)

where η is a smoothing parameter introduced to avoid the
singularity for p < 1. The additional 1/η factor in the
definition of w sets the maximum value possible for w to
unity. Note also that w > 0 for p ≤ 1.

Before going on to deriving the reweighted CP algorithm,
we introduce two parameters λ and ν, which are convenient for
algorithm efficiency and avoiding algorithm instability due to
the reweighting. Both of these parameters are introduced into
the weighted TV term of Eq. (10):

f◦ = arg min
f

{
λ

ν
‖(w|ν∇f |)‖1 + δB2(ε)(X f − g)

}
. (12)

It is clear that ν does not alter this optimization problem in
any way, because the ν in the denominator cancels the one in
front of ∇. The parameter λ does affect the objective function,
but for fixed weights w the solution of Eq. (12) does not
depend on λ because of the hard constraint enforced by the
indicator function. The effect of both of these parameters will
be discussed in detail in Sec. IV-A.

A. Algorithm derivation and pseudocode
The CP algorithm is designed to solve the following primal-

dual pair of optimization problems:

x◦ = arg min
x

{G(x) + F (Kx)} , (13)

v◦ = arg max
v

{
−G∗(KT v)− F ∗(v)

}
, (14)

where G and F are convex functions and K is a matrix,
and where ∗ indicates convex conjugation by the Legendre
transform

F ∗(v) =max
v′

{
vT v′ − F (v′)

}
, (15)

G∗(x) =max
x′

{
xT x′ −G(x′)

}
.

As described in Ref. [30], many optimization problems of
interest for CT image reconstruction can be mapped onto
the generic minimization problem of Eq. (13). Deriving a CP
algorithm involves the following steps:
(1) Make identifications between an optimization problem of
interest, in our case Eq. (10), and Eq. (13).
(2) Derive convex conjugates F ∗ and G∗.
(3) Compute the proximal mappings proxτ [G](x) and
proxσ[F ∗](v),
defined by

proxσ[F ∗](v) = arg min
v′

{
F ∗(v′) +

1
2σ
‖v − v′‖22

}
, (16)

proxτ [G](x) = arg min
x′

{
G(x′) +

1
2τ
‖x− x′‖22

}
.

(4) Substitute necessary components into Algorithm 1.

Algorithm 1 Pseudocode for N steps of the generic CP
algorithm.

1: L← ‖K‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n← 0
2: initialize x0 and v0 to zero vectors
3: x̄0 ← x0

4: repeat
5: vn+1 ← proxσ[F ∗](vn + σKx̄n)
6: xn+1 ← proxτ [G](xn − τKT vn+1)
7: x̄n+1 ← xn+1 + θ(xn+1 − xn)
8: n← n + 1
9: until n ≥ N

Because both terms in Eq. (12) contain linear transforms,
the whole objective function is identified with F and the
linear transform K combines both X-ray projection X and
the discrete gradient ∇. The necessary assignments are

F (y,~z) =
λ

ν
‖(w|~z|)‖1 + δB2(ε)(y − g), (17)

G(f) = 0,

K =
(

X
ν∇

)
,

where the dual space contains vectors which are a concatena-
tion of a data vector of size M and an image gradient vector
of size image dimension d times N , (y,~z)T ∈ R(M+dN)

and K ∈ R(M+dN)×N . Note that in making the assignments,
the parameter ν appears in the objective function F (y,~z)
and the linear transform K. Even though this parameter
plays no role in the optimization problem in Eq. (12), it
affects algorithm performance because it enters into the linear
transform affecting L, σ and τ at line 1 in Algorithm 1.
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The detailed derivations for the necessary components G∗,
F ∗, proxτ [G], proxσ[F ∗] are presented in Appendices B, C,
and D. Using the substitutions for the prox mappings generates
the pseudocode in Algorithm 2 aside from the reweighting step
in line 9. Note that the ∇ operator in this line does not have a
factor of ν in front. This omission is by design, so that level of
smoothing does not change with ν. This algorithm nominally
solves Eq. (6), but there is no proof of convergence. We are
only guaranteed that Algorithm 2 solves Eq. (12) if the weights
w are fixed. As w is in fact changing at line 9, convergence
metrics take on an extra role; they not only tell when the
solution is being approached but also if the particular choice
of algorithm parameters yields stable or unstable updates. In
particular, the convergence criteria play an important role in
determining ν and λ in Sec. IV-A.

Algorithm 2 Pseudocode for N steps of the CP algorithm
instance for reweighted constrained TpV minimization.

1: INPUT: data g, data-error tolerance ε, exponent p, and
smoothing parameter η

2: INPUT: algorithm parameters ν, λ
3: L← ‖(X , ν∇)‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n← 0
4: initialize f0, y0, and ~z0 to zero vectors
5: f̄0 ← f0
6: repeat
7: y′n ← yn + σ(X f̄n − g)
8: yn+1 ← max(‖y′n‖2 − σε, 0) y′n

‖y′n‖2

9: w←
(√

η2 +
∣∣∇f̄n

∣∣2/η

)p−1

10: ~z′n = ~zn + σν∇f̄n
11: ~zn+1 ← ~z′n((λw/ν)/ max(λw/ν, |~z′n|))
12: fn+1 ← fn − τ(X T yn+1 + ν∇T~zn+1)
13: f̄n+1 ← fn+1 + θ(fn+1 − fn)
14: n← n + 1
15: until n ≥ N
16: OUTPUT: fN
17: OUTPUT: w, yN , and ~zN for evaluating cPD and condi-

tions 3.

To check convergence, we derive the conditional primal-
dual (cPD) gap and auxiliary conditions [30]. From the ex-
pressions for G∗ and F ∗ the dual maximization problem to
Eq. (12) becomes

(y◦,~z◦)T = arg max
(y,~z)T

{
−ε‖y‖2 − yT g

−δE∞(λw/ν)(|~z|)− δ0(−ν∇T~z−XT y)
}

. (18)

To form cPD, the primal-dual gap is written down without the
indicator functions:

cPD =
λ

ν
‖(w|ν∇f |)‖1 + ε‖y‖2 + yT g. (19)

Auxiliary conditions are generated by each of the indicator
functions in both the primal and dual objective functions. From
the primal problem in Eq. (12) there is one constraint and from

the dual maximization there are two additional constraints:

condition 1: ‖Xf − g‖2 ≤ ε (20)
condition 2: |~z| ≤ λw/ν (21)

condition 3: ν∇T~z + XT y = 0. (22)

Condition 1 is the designed constraint on the data-error. Con-
dition 2 does not provide a useful check because it is directly
enforced at line 11 of Algorithm 2. Condition 3 is non-trivial
and provides a useful part of the convergence check. Before
demonstrating this nonconvex algorithm for GMI sparsity-
exploiting image reconstruction, we present another variant
that uses anisotropic TpV. It will be seen that this variant may
allow for even greater reduction in sampling requirements.

B. Constrained, anisotropic TpV minimization

Algorithm 3 Pseudocode for N steps of the CP algorithm
instance for reweighted constrained anisotropic TpV mini-
mization.

1: INPUT: data g, data-error tolerance ε, exponent p, and
smoothing parameter η

2: INPUT: algorithm parameters ν, λ
3: L← ‖(X , ν∇)‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n← 0
4: initialize f0, y0, and ~z0 to zero vectors
5: f̄0 ← f0
6: repeat
7: y′n ← yn + σ(X f̄n − g)
8: yn+1 ← max(‖y′n‖2 − σε, 0) y′n

‖y′n‖2
9: ~h← ∇f̄n

10: ~w = {w1,w2} ←
(

1
η

{√
η2 + h2

1,
√

η2 + h2
2

})p−1

11: ~z′n = ~zn + σν~h
12: ~zn+1 ← ~z′n((λ~w/ν)/ max(λ~w/ν,~z′n))
13: fn+1 ← fn − τ(X T yn+1 + ν∇T~zn+1)
14: f̄n+1 ← fn+1 + θ(fn+1 − fn)
15: n← n + 1
16: until n ≥ N
17: OUTPUT: fN
18: OUTPUT: ~w, yN , and ~zN for evaluating cPDani and

conditions 3.

For constrained anisotropic TpV minimization, we consider
the `p quasinorm of the gradient-vector image, rather than the
GMI:

f◦ = arg min
f

{
‖∇f‖pp + δB2(ε)(X f − g)

}
. (23)

The consequence of this change is that for reweighting, the
weights are computed separately for each partial-derivative
image, allowing for finer control. To better appreciate the
difference between isotropic and anisotropic TpV, we specify
the numerical implementations of each of these terms for 2D
imaging. Our implementation of isotropic TpV employs a two
point backward differencing scheme

‖(|∇f |)‖pp ≡
∑
s,t

(√
(fs,t − fs−1,t)2 + (fs,t − fs,t−1)2

)p

,
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where, fs,t labels the scalar pixel value at image pixel location
(s, t). The implementation used for anisotropic TpV is

‖∇f‖pp ≡
∑
s,t

{|fs,t − fs−1,t|p + |fs,t − fs,t−1|p} .

Note that the expressions for isotropic and anisotropic TpV
are the same when p = 2.

The reweighting program for solving Eq. (23) is listed in
Algorithm 3, where the only differences in the listing appear
at lines 10 and 12. For clarity, the component scalar images
of the vector-valued weight images are written out at line
10, assuming a 2D gradient operator. Extension to 3D is
straightforward. For convergence checking, we have

cPDani =
λ

ν
‖ν(~w∇f)‖1 + ε‖y‖2 + yT g. (24)

The auxiliary conditions 1 and 3 remain the same.

IV. SYSTEM SPECIFICATION AND PARAMETER TUNING

Two linear transforms are important for the present theoreti-
cal studies on CT image reconstruction from limited projection
data: the system matrix X modeling X-ray projection, and the
matrix ∇ representing the finite differencing approximation
of the image gradient. For computing the gradient ∇, 2 point
forward differencing in each dimension is used, as described
in Ref. [30].

For specifying X , we simulate a configuration similar to that
of breast CT except that we only consider here 2D fan-beam
CT. The X-ray source to detector midpoint distance is taken
to be 72 cm and the source to rotation center is 36 cm. The
detector is modeled as a linear array with 256 detector bins.
The source scanning arc is a full 360◦ circular trajectory. The
angular sampling interval is equispaced along the trajectory,
but the number of views is varied for the sparse sampling
investigation. The pixel array consists of a 128× 128 grid 18
cm on a side. Only the pixels in the inscribed circle of radius
18 cm are allowed to vary, accordingly the total number of
active image pixels in the field-of-view (FOV) is 12,892 out
of the 16,384 of the full square array. 1 The matrix elements
of X are computed by the line-intersection method.

The test phantom, shown in Fig. 1, models fat, fibroglan-
dular tissue, and microcalcifications with linear attenuation
coefficients of 0.194 cm−1, 0.233 cm−1, and 1.6 cm−1,
respectively, for a monochromatic X-ray beam at 50 keV. The
phantom is a realization of a probabilistic model described
in Ref. [34]. For this phantom, the image is discretized on a
128 × 128 pixel array, and the gray values are thresholded
and set to the values corresponding to one of the three
tissue types. Constructing the phantom this way leads to
a GMI which is somewhat sparse, as seen in Fig. 1. The
total number of pixel values in the phantom is about three
times larger than the number of nonzeros in the GMI, and

1Two ways to implement the use of only FOV pixels are: (1) redefine the
projection and gradient matrices as X ′ = XM , X ′T = MXT , ∇′ = ∇M ,
and ∇′T = M∇T , where M is a diagonal matrix that masks the rectangular
pixel array to zero outside the FOV, or (2) mask the image iterates fn directly
with M in which case condition 3 is slightly modified: νM∇T~z+MXT y =
0.

we can expect that exploiting GMI sparsity will allow for
accurate image reconstruction from reduced data sampling,
using GMI sparsity exploiting algorithms. The described data
and system model will be used in Sec. V to demonstrate the
theoretical reduction in sampling enabled by constrained TpV
minimization. But first, having specified the CT system and
test object, we address the choice of ν and λ and illustrate
single runs of Algorithm 2 in detail.

Fig. 1. (Left) Discrete phantom modeled after a breast CT application
shown in the gray-scale window [0.174 cm−1, 0.253 cm−1]. (Right) Gradient
magnitude image (GMI) of the phantom shown in the gray scale window [0.0
cm−1, 0.1 cm−1]. The units of the GMI are also cm−1, because the numerical
implementation of∇ involves only the differences between neighboring pixels
without dividing by the physical pixel dimension. The phantom array is
composed of 12,892 pixel values, and there are 4,053 non-zero values in
the GMI.

A. Determining ν and λ

As shown in Eq. (17), the two linear transforms ∇ and
X are combined into the transform K with the combination
parameter ν. Different values of ν do not affect the solution
of the optimization problems considered here, but it can
affect the value of ‖K‖2 and consequently the step length
and convergence rate of the CP algorithms. If the system
configuration is fixed, then it is worthwhile to perform a
parameter sweep over ν to find the value which leads to
the fastest convergence rate. But for our purpose, where
we are varying the configuration, such a parameter study is
not beneficial. It is important, however, to standardize this
parameter, because altering properties of the system model
can implicitly yield quite different effective values of ν. The
reason for this is that the spectrum of X varies substantially
depending on the size of the data vector and image array, and
the physical units of projection and image gradient values are
different. To standardize ν, we define:

νcrit ≡ ‖X ‖2/‖∇‖2. (25)

The critical value of ν, νcrit, is chosen so that ‖X ‖2 is equal
to ν‖∇‖2. Note that altering units on one of the transforms is
automatically compensated with a different value of νcrit. For
the present investigations ν = νcrit unless stated otherwise.

The role of λ is more important than that of ν for the
reweighting algorithms, because adjusting λ both affects con-
vergence speed and enables control over the stability of the
reweighted constrained TpV minimization. In order to separate
these two roles of λ, we illustrate its effect on the convex case
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p = 1, and a nonconvex example with p = 0.5. In the convex
p = 1 case stability of the algorithm is not an issue because
there is no reweighting as the weights in Algorithm 2 evaluate
to unity.

For this illustration, an ideal data simulation is specified
where the number of views are too few for X to have a
left inverse. The number of views is set to 25, a value which
will turn out to be too few for convex TV minimization, but
sufficient for nonconvex TpV minimization. The simulation
data are consistent in that no noise is included and the projector
for the data matches that of the algorithm. Accordingly, we
select ε = 0 for the test runs.
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Fig. 2. Convergence plots for image reconstruction from noiseless data
containing 25 projections using Algorithm 2 with three different values of
λ. For these results, we set p = 1.0 which yields convex constrained
TV minimization and set ε = 0. The top three plots are used to evaluate
convergence of the algorithm, and the middle value λ = 10−3 shows the
fastest convergence rate. Note that for this convex case Algorithm 2 is proved
to converge for any value of λ. The bottom plot indicates the discrepancy
from the test phantom. The image RMSE is normalized by dividing the actual
RMSE values in cm−1 by 0.194 cm−1, the linear attenuation coefficient of
the background fat tissue. That this image RMSE does not tend to zero while
the convergence criteria do results from the fact that too few projections are
available for accurate reconstruction by constrained TV minimization. Another
indication for having too few views is that the solution TV is less than the
test phantom TV.

A run of constrained TV minimization, the p = 1 case:
Figure 2 plots the various convergence metrics and the image
RMSE for 1,000 iterations of Algorithm 2 with p = 1 and
ε = 0. Note that the value of η plays no role for p = 1, because
the exponent in the expression of the weights is p − 1 and
accordingly the weights will all be unity in this case regardless
of the value of η. Individual runs for λ = 10−4, 10−3, and
10−2 are shown. We discuss the convergence criteria from top
to bottom.

The top panel of Fig. 2 indicates the value of cPD multiplied

by the iteration number. This plot is shown this way because
cPD can be either negative or positive as it approaches zero,
and multiplication by the iteration number helps to indicate the
empirical convergence rate of this metric for different values
of λ. From this sub-figure we see that the values of λ =
10−4, and 10−3 show empirical convergence faster than the
reciprocal of the iteration number while cPD corresponding to
λ = 10−2 shows a convergence rate near the reciprocal of the
iteration number. The second panel of Fig. 2 indicates the data
RMSE, which tends to zero because the data are ideal. The
third panel shows the constraint on the dual variables from
Eq. (22) by plotting the left hand side of this equation, and
this quantity also tends to zero. In each of these convergence
plots we obtain the fastest rate with λ = 10−3, among the
three values shown. The image RMSE shown in the bottom
panel is not a convergence metric because it says nothing about
whether or not the image estimate is a solution to Eq. (4), but
this metric is clearly of theoretical interest because it is an
indicator of the success of the image reconstruction. For 25
views and p = 1, we see that the image RMSE is tending to
a non-zero value and that the number of views is insufficient
for exact image recovery.
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Fig. 3. Same as Fig. 2 except p = 0.5 yielding a nonconvex constrained
TpV minimization problem. For p < 1, selecting λ too large can lead to
unstable behavior seen in the λ = 10−2 case as convergence metrics do
not decay with iteration number. The fat normalized image RMSE plot is
interesting in that the curve corresponding to λ = 10−3 shows a rapid drop
at 500 iterations and correspondingly we see in Fig. 4 that this run accurately
recovers the phantom within the 1,000 iterations.

A run of constrained TpV minimization, the p = 0.5 case:
For this p = 0.5 case all conditions are kept the same as the
previous p = 1.0 case except for the p value, and we point out
that the value of η = 0.194 × 10−2 cm−1 now plays a role,
η here is selected to be 1% of the background fat attenuation
coefficient. The corresponding convergence plots are shown in
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Fig. 3, and similar convergence rates to the p = 1.0 case are
seen with a couple of notable exceptions. First, the λ = 10−2

case yields unstable iteration as indicated by a steady, if slow,
increase in cPD and a level dependence of the data RMSE and
dual constraint. Second, the convergence rates, according to
the convergence criteria, seem to be similar between λ = 10−4

and 10−3, yet the image RMSE for λ = 10−3 shows much
lower values and a rapid drop at 500 iterations.

The corresponding images at iteration 1,000 along with the
TV weights are shown in Fig. 4. The image estimates cor-
roborate the image RMSE plot from Fig. 3 showing accurate
recovery for λ = 10−3 alone at 1,000 iterations. We reiterate
that the reason for image estimate inaccuracy is different for
λ = 10−2 and 10−4. For the former case, the reweighting is
unstable and the test phantom will not be recovered at any
iteration number, while for the latter case, the reweighting
is stable but more iterations are needed. Indeed, for this
particular case, we have continued the iteration and find that
the test phantom is accurately recovered at 2,500 iterations for
λ = 10−4.

λ=10−4 λ=10−3 λ=10−2

Fig. 4. Top row shows images at iteration 1,000 obtained for various values
of λ using Algorithm 2 for p = 0.5. It is clear that the phantom is recovered
visually at this iteration number for λ = 10−3. Shown in the bottom row are
the computed weighting images at iteration 1,000. For the recovered case of
λ = 10−3 the weight image is 1.0 at all pixels where the GMI is zero.

As an aid to determining optimal values of λ, we have found
it useful to monitor the change in the weighting function:

∆w = ‖wn+1 − wn‖2, (26)

and partial step lengths:

∆d = ‖XT (yn+1 − yn)‖2, (27)

∆h = ‖ν∇T (zn+1 − zn)‖2. (28)

The use of ∆w is straightforward as it is reasonable to expect
that the weighting function should converge to a fixed weight
if the reweighting procedure is stable. As seen in the top panel
of Fig. 5, ∆w decreases to the lowest value for λ = 10−3.
For λ = 10−2, ∆w does not decay, which is consistent with
instability of the reweighting, and for λ = 10−4, ∆w does
show steady decay but just not as rapid as that of λ = 10−3.
It is also useful to examine the magnitude of the separate terms

in the image update at line 12 of Algorithm 2. The quantity ∆d
indicates the change in the image estimate due to data fidelity,
and ∆h represents the change in the image due to the weighted
TV minimization. Empirically, we find the best convergence
behavior when ∆h is of similar magnitude to ∆d and λ is an
effective control parameter for controlling the relative sizes of
these step lengths. For the convex case of p = 1.0, we find
that ∆h and ∆d are still useful for selecting λ, but clearly
∆w is not because there is no reweighting involved.

10-4

10-3

10-2

10-1

∆
w λ=10−4

λ=10−3

λ=10−2

10-6

10-5

10-4

10-3

λ
=

10
−

4

∆d

∆h

10-6

10-5

10-4

10-3

λ
=

10
−

3

∆d

∆h

0 200 400 600 800 1000

iteration

10-4

10-3

10-2

λ
=

10
−

2

∆d

∆h

Fig. 5. As an aid to selecting λ it is useful to plot the step lengths ∆d and
∆h, defined in the text, as a function of iteration number. If ∆d À ∆h, λ
is too low yielding slow convergence. If ∆d ≈ ∆h, λ is near the optimal
value for algorithm convergence rate. If ∆d ¿ ∆h, λ is too large and the
algorithm behavior is likely unstable for p < 1. The change in the weighting
image, ∆w shown at top, is also a useful indicator for convergence of the
reweighting algorithm.

V. PHANTOM RECOVERY WITH SPARSE-VIEW SAMPLING

The isolated algorithm tests for 25 view projection data
indicate the possibility for accurate image reconstruction from
fewer views for nonconvex TpV minimization, at p = 0.5,
than convex TV minimization. In this section, we explore this
possibility more thoroughly, varying the number of views and
value of p. In order to perform this parameter survey there
are three technical issues to address: (1) the study design and
stopping rule, (2) how to obtain results for p = 2.0, and (3)
how to handle the algorithm parameter λ.

Study design: The phantom recovery study employs ideal
projection data so that only the issue of sampling sufficiency
comes into question. In principle, the data error parameter ε
could be set to zero and image RMSE computed as a function
of number of views and value of p. Doing so, however, causes
problems in comparing results between different parameter
values, because we cannot hope to solve the optimization
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problem with ε = 0 accurately. Instead, we employ the study
design from Ref. [5] and choose a small but nonzero ε. We
select ε so that the relative data RMSE ε′ defined

ε′ ≡ ε

max(g)
√

size(g)

is 10−5. During the iteration we use a stringent stopping rule
and require that

0.999× 10−5 ≤ ‖X fn − g‖2
max(g)

√
size(g)

≤ 1.001× 10−5, (29)

for 100 consecutive iterations.
Algorithm for TpV minimization with p = 2.0: When p =

2.0, TpV becomes the standard quadratic roughness metric,
and the corresponding optimization problem is

f◦ = arg min
f

{
λ

ν2
‖ν∇f‖22 + δB2(ε)(X f − g)

}
, (30)

where the denominator in the first term is ν2 in order to make
the optimization problem independent of ν. Note that both
isotropic and anisotropic TpV are the same when p = 2.0.
Because the objective function is quadratic, reweighting is not
necessary, and there are many algorithm choices available. In
Ref. [5], the Lagrangian form of Eq. (30) is solved using the
conjugate gradients algorithm adjusting the Lagrange multi-
plier so that the desired ε is obtained. For this work, we derive
a different instance of the CP algorithm to handle the quadratic
penalty. To obtain the pseudocode, we modify Algorithm 2 by
removing the reweighting, i.e. w ← 1, and replacing line 11
with

~zn+1 ← ~z′n/(1 + σν2/(2λ)).

This modification directly solves the constrained quadratic
roughness problem.

Automatic setting of the algorithm parameter λ: As noted
in Sec. IV-A, there is trial and error involved in selecting
the optimal value of λ for fastest algorithm convergence.
While this issue is manageable for a fixed configuration, it
complicates surveys over configuration parameters, such as the
number of views, because the optimal λ is likely different for
each configuration. Furthermore, a bad choice of λ leading
to instability of the reweighting causes the algorithm to never
terminate by the specified stopping rule. In order to complete
the parameter survey without intervention, we allow λ to vary
with iteration number according to the following formula:

λn ← λ02−blog2 nc, (31)

yielding the sequence

λn = λ0

{
1,

1
2
,
1
2
,
1
4
,
1
4
,
1
4
,
1
4
,
1
8
, . . .

}
. (32)

By having a decaying schedule for λ, we are assured that
at some finite iteration number the reweighting algorithm
becomes stable and dwelling on fixed values yields behavior
similar to the basic algorithm within the plateaus of λn.
Opening this possibility of variable λn raises the question of
other decay schedules or adaptive control, but such studies are
beyond the scope of this article.

For the present results where p is varied in [0.1, 2.0] and the
number of views range from 18 to 80, we find the sequence
of λn in Eq. (31) sufficient. Furthermore, with λ0 set to 1, the
algorithm automatically converges to a solution satisfying the
stopping rule specified in Eq. (29) for all numbers of views
and values of p in the scope of the study. The smallest and
largest number of iterations required are 4,331 and 33,920,
respectively. Even though we found it sufficient to set λ0 = 1,
we introduce this parameter in case there are other conceivable
tomographic system configurations that call for larger λ.

A. Test phantom recovery results
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Fig. 6. Image recovery plots for both isotropic and anisotropic TpV
minimization subject to the data error constraint ε′ = 10−5. The constraint
parameter on the data RMSE is related to the `2 data error tolerance
by: ε′ = ε/(max(g)

√
m), where m = size(g) is the total number of

measurements.

The phantom recovery results for both isotropic and
anisotropic TpV minimization are summarized in Fig. 6. For
reference, we include the p = 2.0 case, which does not exploit
GMI sparsity. The image RMSE is reported as a fraction of
the background fat attenuation. In the plots the image RMSE
can be small, but it cannot be numerically zero because the
data error tolerance parameter ε is not zero. Nevertheless some
parameter choices lead to small image RMSE values, and
for this work we say that the image is accurately recovered
if the image RMSE is less than 10−3, or in other words
0.1% of fat attenuation. By comparison, the contrast between
fibroglandular and fat is 20%. Because image reconstruction
by constrained TpV minimization exploits GMI sparsity, it is
interesting to compare number of samples m = size(g) for
accurate image recovery to the number of GMI nonzeros.

Accurate recovery for the p = 2.0 case, which is the same
for both isotropic and anisotropic TpV, occurs at 80 views –
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a number which can be interpreted as full sampling for the
problem. At this number of views, the number of samples
is m = 20,480 which is about 67% more than the number
of pixels in the image array. That such an overdetermined
configuration is needed for accurate image reconstruction for
p = 2 is a consequence of the condition number of X [5].

For p ≤ 1, both isotropic and anisotropic TpV minimization
are exploiting GMI sparsity for accurate image reconstruction
and it is clear from both graphs that substantial reduction in
the number of samples is permitted by this strategy. Starting
with isotropic TpV, we observe that for the convex case,
p = 1, accurate image reconstruction occurs at 35 views where
m = 8,960 which is less than the number of image pixels
n = 12,892 and is a little more than twice the phantom GMI
sparsity 4,053. Reducing p to p < 1, leads to nonconvex
TpV minimization but also to more effective exploitation
of GMI sparsity. As seen in the top graph of Fig. 6, even
introducing a little nonconvexity as in the p = 0.9 case yields
a dramatic drop in the number of views as we obtain accurate
image reconstruction at 30 views, where m = 7,680. For
the present simulation, it appears that this strategy saturates
at p = 0.5, where accurate image reconstruction occurs at
22 views and even going to p = 0.1 does not alter the
necessary number of projections. Although, we do note that
p = 0.1 does yield slightly smaller image RMSE than p = 0.5,
indicating a possible increased robustness to some forms of
data inconsistency. At 22 views, the number of samples is
quite low as m = 5,632, which is only 39% greater than the
number of GMI nonzeros.

Comparing anisotropic TpV with the isotropic case, we ob-
serve that even greater sampling reduction is seen as accurate
image reconstruction is observed at lower numbers of views
for p ≤ 1. For p = 0.1 and 0.5, accurate image reconstruction
is obtained at 20 views, corresponding to m = 5,120 – only
26% greater than the number of GMI nonzeros. One might
argue that the GMI sparsity might not provide the correct ref-
erence for anisotropic TpV and instead sparsity in the phantom
gradient itself should be the correct quantity of comparison.
But we point out that the components of the phantom gradient
are not independent, and the GMI sparsity provides a better
estimate of the number of underlying independent parameters
for the phantom gradient.

VI. IMAGE RECONSTRUCTION WITH NOISY PROJECTION
DATA

The previous sets of results demonstrate the theoretical
motivation of constrained TpV minimization for image re-
construction in CT. To consider use of the above algorithms
on clinical data, it is important to understand the algorithms’
response to inconsistency with the employed data model in Eq.
(2). Response to data inconsistency is important to assess, be-
cause it provides a sense of algorithm robustness and because
algorithm implementation choices, equivalent under ideal data
conditions, may not be equivalent in the presence of data
inconsistency. The data model used in the present formulation
of constrained TpV minimization is simplistic in that it ignores
important physical factors such as the polychromaticity of

the X-ray beam, X-ray scatter, partial volume averaging, and
noise. While it may be possible to include some of these
physical factors into the constrained TpV minimization for
the purpose of potential image quality gain, such an effort is
beyond the scope of this article. Instead, in this section we
present reconstructed images from simulated data including
one of the most important sources of data inconsistency for
the breast CT application, namely noise. Later, in Sec. VII,
we present reconstructed images from an actual breast CT
scan data set, which naturally includes all the physical factors
implicitly.

In this section, the simulated projection data are generated
from a data model where the system size is scaled up and
noise is included at a level typical of breast CT. The breast
CT model is challenging because the prototype systems are
designed to function at very low X-ray intensities so that the
exposure to the subject is equivalent to two-view full-field
digital mammography [35].

The image array is taken here to be the inscribed circle of a
512×512 pixel array with the square pixels having width 0.35
mm. The scan configuration is again circular fan-beam with
the same geometry as described in Sec. IV, but the number
of projections is 200 and the detector now consists of 1024
bins of width 0.36 mm. Noise is generated using a Poisson
model with mean equal to the computed mean of the number of
transmitted photons at each detector bin, where the integrated
incident flux at each bin, per projection, is 66,000 photons. For
the present simulations, the breast phantom is also modified
in order to avoid isolated pixels of fibroglandular tissue. The
phantom is generated, as before, with a power law noise
distribution, but this image is smoothed by a Gaussian with
4 pixel full-width-half-maximum (FWHM) prior to binning
into fat and fibroglandular tissues. No microcalcifications are
modeled in the phantom. The new phantom and fan-beam FBP
reconstructed images are shown in Fig. 7.

Fig. 7. A breast CT simulation using linear attenuation coefficients for a
50 keV mono-energetic X-ray beam. The noise level is typical for prototype
breast CT scanners. Shown are FBP reconstructions with a ramp filter and
the same image after smoothing by a Gaussian of FWHM of 0.8 pixels. The
FBP images serve to indicate visually the noise level inherent in the data.

The purpose of the present simulations is to illustrate in
detail how realistic and challenging levels of data incon-
sistency impact the TpV motivated reweighting algorithm.
The number of projections, being selected as 200, is fewer
than the 500 views acquired in typical breast CT proto-
types. For 200 projections the total number of samples is
200× 1024 = 204,800, and the number of pixels is 205,892.
While this system is undersampled, it is more than the number
required by constrained TpV minimization for accurate image
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reconstruction from noiseless data at any value of p ≤ 1. In
this way we isolate the issue of noise response, separating it
from projection angular undersampling.

Fig. 8. Reconstructed ROIs for p = 0.5, 0.8, 1.0, and 2.0 for columns
1,2,3, and 4, respectively. The data error constraint parameter ε is set so as
to correspond to a data RMSE of 0.015, 0.0145, 0.014, 0.012, and 0.01 for
rows 1, 2, 3, 4, and 5, respectively. Shown in the array of images are a blow
up ROI of the upper left side of the image so that small details can be seen
clearly.

The results for image reconstruction by constrained TpV
minimization for nonconvex p = 0.5 and 0.8 are compared
with convex p = 1.0 and 2.0 in Fig. 8. One of the convenient
features of employing a hard data-error constraint is that the
rows of the image array have identical data fidelity, allowing us
to focus only on the impact of p. We point out that the p = 2.0
case is not GMI sparsity-exploiting, and as a consequence the
corresponding images potentially suffer from both noise and
undersampling artifacts.

The array of images illustrates an important feature of the
use of nonconvex TpV. With the underlying object model being
complex, yet piecewise constant, the TpV quasinorm reduces
the speckle noise in regions of uniform attenuation coefficient
relative to p = 1.0 and 2.0. In terms of image RMSE relative
to the truth, the panel with the lowest error appears in the
second row and second column, corresponding to p = 0.8 and
ε′ = 0.0145; we point out, however, that image RMSE is not
always the most appropriate measure of image quality and that
image quality evaluation should take into account the imaging
task [36]. Nevertheless the noise suppressing properties of
TpV shows promise and may prove useful to image analysis

algorithms such as those for segmentation.

η=0.01× 0.194 η=0.02× 0.194 η=0.1× 0.194

Fig. 9. Focusing on the case of p = 0.5 and ε set so that the data RMSE
is 0.0145, we illustrate the reconstructed ROI dependence on the parameter
η in the top row. Shown in the bottom row is the corresponding impact on
the weighting image.

Scrutinizing the nonconvex images in Fig. 8, there is a
potential difficulty for the breast CT application. As ε′ in-
creases, the speckle noise is reduced but there also appear
isolated pixels with high gray values which could potentially
be mistaken for microcalcifications. In practice, these isolated
peaks can be differentiated from actual structure because the
latter generally involve groups of pixels. Nevertheless these
specks can be distracting, and we discuss their origin and how
to avoid these artifacts.

In Fig. 9, we focus on the panel that corresponds to p = 0.5
and ε′ = 0.0145. On the left most column the same ROI shown
in Fig. 8 is shown again along with the converged weight
image w. The weight image is unity in uniform regions and
small at pixels belonging to the edges of tissue structures; in
this way noise in the uniform regions can be heavily smoothed
away without blurring the edges. In the ROI there are a few
residual specks due to data noise and we can see that these
specks correspond to specks of low weighting in w and these
pixels are being mistaken for edge pixels of true structure. If
such specks interfere with the function of the imaging system
as they would, for example, in the breast CT application, there
are measures which can be taken to avoid them.

Within the framework of the `1 reweighting algorithm, one
important option is to vary η. The value of η used here is
1% of the background fat attenuation value, and it is much
smaller than the contrast between fat and fibroglandular tissue.
By increasing η, the speck artifacts can be removed while
still maintaining some of the enhanced edge-preserving feature
of the TpV reweighting scheme. The effect of increasing η
is shown in the middle and right columns of Fig. 9. As η
increases specks are removed but the weighting at edge pixels
also increases.

Another approach is to realize that the purpose of the `1
reweighting algorithm is to study image recovery under ideal
data conditions, where it is important to be able to recover the
phantom to arbitrarily high accuracy. For noisy data it may be
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`1  RW quadratic RW

Fig. 10. Focusing on the case of p = 0.8 and ε′ = 0.0145, we illustrate the
reconstructed ROI for (left) `1 reweighting compared with (right) quadratic
reweighting. The parameter η = 0.194× 10−2 or 1% of the fat attenuation.
Shown in the bottom row is the corresponding weighting image.

advantageous to employ quadratic reweighting, which provides
a different response in the image to data noise.

A. TpV minimization by quadratic reweighting

The original nonconvex TpV minimization problem from
Eq. (4) can also be addressed by use of quadratic reweight-
ing as illustrated in Appendix A. To implement quadratic
reweighting, the convex weighted `1-based optimization prob-
lem in Eq. (10) is replaced by the following convex weighted
quadratic optimization problem

f◦ = arg min
f

{
λ

ν2

∥∥ν√w |∇f |
∥∥2

2
+ δB2(ε)(X f − g)

}
, (33)

which modifies Eq. (30) by including a weighting factor
in the quadratic roughness penalty. The corresponding dual
maximization problem is

(y◦,~z◦)T = arg max
(y,~z)T

{
−ε‖y‖2 − yT g − ν2

4λ

∥∥|~z|/√w
∥∥2

2

−δ0(−ν∇T~z−XT y)
}

. (34)

and accordingly

cPDquad =
λ

ν2

∥∥ν√w |∇f |
∥∥2

2
+ε‖y‖2+yT g+

ν2

4λ

∥∥|~z|/√w
∥∥2

2
.

(35)
The pseudocode for TpV minimization by quadratic reweight-
ing is given in Algorithm 4. The difference between this
algorithm and Algorithm 2 appears in line 9, where the
exponent of the weights expression is changed from p − 1
to p − 2, and line 11, where the form of the update step for
the dual gradient variable is altered.

The quadratic reweighting algorithm has a different re-
sponse to noise and other inconsistency mainly because of
the parameter η. The weighted image roughness term with

Algorithm 4 Pseudocode for N steps of the CP algorithm
instance for quadratic reweighted constrained TpV minimiza-
tion.

1: INPUT: data g, data-error tolerance ε, exponent p, and
smoothing parameter η

2: INPUT: algorithm parameters ν, λ
3: L← ‖(X , ν∇)‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n← 0
4: initialize f0, y0, and ~z0 to zero vectors
5: f̄0 ← f0
6: repeat
7: y′n ← yn + σ(X f̄n − g)
8: yn+1 ← max(‖y′n‖2 − σε, 0) y′n

‖y′n‖2

9: w←
(√

η2 +
∣∣∇f̄n

∣∣2/η

)p−2

10: ~z′n = ~zn + σν∇f̄n
11: ~zn+1 ← ~z′n/(1 + σν2/(2wλ))
12: fn+1 ← fn − τ(X T yn+1 + ν∇T~zn+1)
13: f̄n+1 ← fn+1 + θ(fn+1 − fn)
14: n← n + 1
15: until n ≥ N
16: OUTPUT: fN
17: OUTPUT: w, yN , and ~zN for evaluating cPDquad and

conditions 3.

finite η is smooth, whereas the same term for `1-reweighting is
nonsmooth even when η > 0. To see the qualitative difference
between these algorithms, Fig. 10 shows ROIs for these
algorithms and the same parameters p = 0.8 and ε′ = 0.0145.
For both ROIs η = 0.194 × 10−2 cm−1, which is 1% of the
fat attenuation. The quality of the noise is markedly different
with the quadratic reweighting exchanging the sparse specks
with more blobby variations which would not be mistaken for
microcalcifications.

VII. APPLICATION TO CLINICAL BREAST CT DATA

Fig. 11. (Left) A slice from a volume reconstructed from breast CT data
by TpV minimization, using quadratic reweighting. The parameters yielding
this image are p = 0.8 and relative data RMSE ε′ = 0.0115. (Right) The
corresponding slice image generated by the Feldkamp-Davis-Kress (FDK)
algorithm. The display gray scale window is [0.164,0.263] cm−1.

While the simulations of Sec. VI illustrate the properties of
the proposed IIR algorithm on a realistic simulation of breast
CT, the data model used does not contain all the inconsisten-
cies present in an actual scanner. Thus, we apply the algorithm
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Fig. 12. Slice images obtained with TpV minimization from breast CT data
for (left column) p = 0.5 and (right column) p = 0.8. The relative data-error
RMSE increases from the bottom row to top row with values ε′ = 0.011,
0.0115, 0.01175, and 0.012. The display gray scale window is [0.164,0.263]
cm−1.

to a clinical breast CT data set. The purpose of doing so is to
first demonstrate that use of nonconvex TpV minimization can
yield useful images under actual clinical conditions, and that
the nonconvexity of the problem formulation does not lead to
strange image artifacts. The second goal is to survey image
properties for different values of p and data-error fidelity pa-
rameter ε. To this end we perform reconstructions on a single
data set, displaying the same slice. We make no attempt to
find optimal p and ε, nor to claim that the present algorithm is
better than other image reconstruction algorithms. Ultimately,
evaluation of the algorithm needs to be tied together with
acquisition optimization. As the present algorithm appears to
be robust against angular under-sampling, it is possible that
the breast CT acquisition could be altered to include fewer

Fig. 13. Same as Fig. 12 except that the left and right columns show images
for p = 1.0 and p = 2.0, respectively.

projections in a step-and-shoot mode, allowing for greater X-
ray intensity for each projection, while maintaining the total
dose of 2 mammographic projections.

The prototype breast CT scanner at UC Davis is described in
Refs. [37], [38]. The data set consists of 500 projection views
acquired on a 768 ×1024 flat-panel detector with pixel size
of (0.388 mm)2. The volume reconstruction is performed on
a 700×700×350 image array with cubic voxels of dimension
(0.194 mm)3.

The particular version of TpV minimization is quadratic
reweighting, shown in Algorithm 4, with η = 0.194 ×
10−2 cm−1, the same value as the simulation. For quadratic
reweighting, the p = 2 case does not need to be dealt
with separately as is the case for `1 reweighting. Setting
p = 2 in Algorithm 4 sets the weights w to one. For each
reconstruction, the TpV minimization algorithm is run for
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1000 iterations in order to obtain converged volumes, but we
note that in practice this may be too high a computational
burden and that it is likely not necessary to obtain accurate
convergence for TpV minimization to yield clinically useful
volumes [24].

Breast CT volumes are reconstructed for a range of param-
eters: 0.5 ≤ p ≤ 2.0, and relative data-error RMSE 0.011 ≤
ε′ ≤ 0.012. For reference to the standard image reconstruction
algorithm, we show one of the TpV minimization images
in comparison with image reconstruction by the Feldkamp-
Davis-Kress (FDK) algorithm in Fig. 11. The selected TpV
minimization image for the comparison is obtained for p = 0.8
and ε′ = 0.0115. Given that the number of projections is 500,
we do not expect large differences between FDK and IIR
algorithms, and we observe in Fig. 11 that the two images
show similar structures with the TpV minimization image
showing, visually, a lower noise level. That the two images
have similar structure content provides a challenging check
on the TpV minimization IIR algorithm.

To appreciate the impact of varying p and ε′, we show
arrays of images of the same full slice in Figs. 12 and 13,
and ROIs in Fig. 14. In the full slice images we observe little
difference for the tight data-error constraint of ε′ = 0.011,
which is understandable because the view sampling rate is
high and the set of feasible images satisfying the data-error
constraint is relatively small. There is, however, a small but
visually noticeable change in the quality of the noise as p
varies. As the data-error constraint is relaxed, we observe that
the smaller values of p become regularized more rapidly than
larger p. The regularization for nonconvex TpV is not uniform.
As ε′ increases, noise on the soft tissue is reduced substantially
while the high contrast microcalcifications are preserved with
little blurring.

To better visualize the impact of the p and ε′ on the
microcalcifications and to observe more local texture changes
in the soft tissue, we show an ROI array in Fig. 14. The
GMI sparsity promoting values of p, p ≤ 1.0 all show rapid
regularization of the soft tissue with increasing ε′, while the
texture change for p = 2.0, is much more gradual. For
the higher contrast microcalcifications, the visual dependence
with increasing ε′ is quite different, depending on p. For
p = 0.5, we note little change in the sharpness of the
microcalcifications. Rather, the calcifications disappear as ε′

increases with smaller calcifications disappearing at lower ε′.
At the other extreme, p = 2.0, the microcalcifications exhibit
the more traditional trend of becoming more blurry, albeit that
this trend is not very strong over the shown range of ε′. The
intermediate values of p show trends which are a combination
of the rapid reduction in contrast and standard blurring.

With these preliminary results, we cannot yet make a rec-
ommendation for an optimal image reconstruction algorithm
for the breast CT system. The results instead are intended
to demonstrate the effect of the parameters p and ε′. More-
over the proper choice of algorithm depends on the scanner
configuration, visual task, and type of observer (human or
machine). We do expect, however, that use of nonconvex
TpV minimization will facilitate scanning configurations with
a lower view angle sampling rate, which could impact the

Fig. 14. Expanded ROIs of the images shown in Figs. 12 and 13. The ROI
corresponds to the left-center part of the image containing the microcalcifi-
cations. The gray scale window is expanded to [0.164,0.303] cm−1 in order
to accommodate the higher attenuation values of the microcalcifications. The
columns correspond to p = 0.5, 0.8, 1.0, and 2.0 from left to right. And the
rows correspond to ε′ = 0.011, 0.0115, 0.01175, and 0.012 from bottom to
top.

optimal balance between number of views and X-ray beam
intensity.

VIII. SUMMARY

This work develops accurate reweighting IIR algorithms
for application to CT that are used to investigate sparse data
image reconstruction with nonconvex TpV minimization. The
algorithms are efficient enough for research purposes in that
accurate solution is obtained within hundreds to thousands of
iterations.

Employing `1-reweighting for both isotropic and anisotropic
TpV minimization, we observe substantial reduction in the
necessary number of projections for accurate recovery of the
test phantom. In fact, the number of measurements needed for
p = 0.5 is a small fraction larger than the number of nonzero
elements of the test phantom’s GMI. These experiments do not
necessarily generalize to a rule relating number of samples to
GMI sparsity, but the results are nonetheless striking especially
considering that the phantom has no particular symmetry
and has the complexity similar to what might be found for
fibroglandular tissue in breast CT. It may not be practical
to reduce the number of views to the limit of ideal image
recovery, but it is important to identify this limit. With this
knowledge there is the option to operate at a number of views
slightly greater than the recovery limit, where there are still
fewer projections than what would be needed for convex TV
minimization or algorithms that do not exploit GMI sparsity.

The response to noise present in a realistic breast CT
simulation is also tested along with application to an actual
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clinical breast CT data set. The results show that the reweight-
ing algorithms provide images that may be clinically useful.
The fact that the IIR algorithms employing nonconvex TpV
allows for accurate image recovery with very sparse projection
data could prove interesting for fixed dose trade off studies.
Namely, the operating point in the balance between number
of projections and exposure per projection may be shifted
toward fewer projections with the use of nonconvex TpV
minimization.
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APPENDIX

A. Illustration of reweighting for nonconvex optimization

For the purpose of this article being self-contained, we
illustrate here a simple one dimensional example of the use of
reweighting to solve a nonconvex optimization. So that there
is some resemblance to the optimization problems discussed
in the text, we select a constrained `p-minimization problem
as an example

x◦ = arg min
x

φ(x) = arg min
x

{|x|p + δP (x− 1)} , (36)

where the set P stands for all nonnegative real numbers and
the corresponding indicator function encodes the constraint
x ≥ 1. The objective function of this nonconvex minimization
problem is represented by the solid black curves of Figs. 15
and 16.

The use of reweighting here involves making an initial
estimate xest for x. This estimate is then used to replace the
nonconvex objective function with a convex function taking
on the same value at xest. In the context of `1-reweighting
a weighted `1-norm replaces the `p term and the weighting
factor is used to match the convex and nonconvex objectives
at xest. In this case, the weighting factor is

w = |xest|p/|xest| = |xest|(p−1). (37)

The intermediate convex optimization acting as a surrogate for
Eq. (36) is

x◦ = arg min
x

φ(x) = arg min
x

{w|x|+ δP (x− 1)} , (38)

which can be solved by a host of convex optimization algo-
rithms such as the Chambolle-Pock algorithm used in the text.
There is some freedom in designing the reweighting algorithm,
reflecting how accurate the intermediate optimization Eq. (38)
is solved. For the algorithms in the text only one iteration of
the solver for the intermediate problem is taken. The result
is then assigned to xest, which is in turn used to compute

x

x

xi

xi+1

φ(x)

φ(xi)

φ(x)

φ(xi+1)

Fig. 15. Illustration of one iteration of `1-reweighting for solving the
nonconvex optimization Eq. (36). The dashed black curve is the `p quasinorm
for some p with 0 < p ≤ 1. The solid black curve is the complete objective of
Eq. (36). The solution estimate xi is indicated by the solid blue circle in the
top graph. The intermediate convex weighted `1 minimization is indicated by
the solid red curve, where the weight is selected so that the red curve intersects
the solid blue circle. The estimate xi+1, indicated by the shaded blue circle in
the top graph and the solid circle in the bottom graph, is generated by a single
iteration of the Chambolle-Pock algorithm. The bottom graph illustrates how
the weight is adjusted so that the surrogate weighted `1 term intersects the
solid blue circle corresponding xi+1.

x

x

xi

xi+1

φ(x)

φ(xi)

φ(x)

φ(xi+1)

Fig. 16. Same as Fig. 15 accept that the figure illustrates quadratic
reweighting.

new weights. An illustration of this one-intermediate-step `1-
reweighting algorithm is shown in Fig. 15.

For quadratic reweighting the weights and intermediate
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convex optimization problem are

w = |xest|p/|xest|2 = |xest|(p−2), (39)

and

x◦ = arg min
x

φ(x) = arg min
x

{
w|x|2 + δP (x− 1)

}
, (40)

respectively. The corresponding one-intermediate-step
quadratic reweighting algorithm is shown in Fig. 16.

The 1D nonconvex problem, Eq. (36), discussed here is
used for illustration purposes. But there are peculiarities of this
low dimensional example. For example, it is clear from both
Figs. 15 and 16 that the solution of Eq. (36) coincides with
the solutions of both the weighted `1 and quadratic surrogate
convex optimization problems. This will not be the case for
the multidimensional optimization problems considered in the
text. Also, for the multidimensional case it is important to
guard against potential division by zero in computing the
weights. For the present one dimensional problem this danger
seems remote. Nevertheless a possible corresponding weight
for `1-reweighting is

w =
√

η2 + |xest|2
(p−1)

, (41)

where η is a small nonnegative real number. And similarly for
quadratic reweighting

w =
√

η2 + |xest|2
(p−2)

. (42)

The following sections show derivations for G∗, F ∗,
proxτ [G], and proxσ[F ∗] from Sec. III-A.

B. Derivation of G∗ and proxτ [G]

As G(f) = 0, it is easy to show that

G∗(f) = δ0(f),

(see for example Eq. (18) of Ref. [30] and subsequent discus-
sion). It is also easy to show that

proxτ [G](f) = f .

C. Derivation of F ∗

This computation is more involved, and we split this up into
two, defining

F1(y) = δB2(ε)(y − g),

F2(~z) =
λ

ν
‖(w|~z|)‖1 . (43)

Starting with F ∗
1 ,

F ∗
1 (y) = max

y′

{
yT y′ − F1(y′)

}
(44)

= max
y′

{
yT y′ − δB2(ε)(y

′ − g)
}

; (45)

substituting y′′ = y′ − g, we obtain

F ∗
1 (y) = yT g + max

y′′

{
yT y′′ − δB2(ε)(y

′′)
}

, (46)

y′′ = εy/‖y‖2, and (47)

F ∗
1 (y) = yT g + ε‖y‖2. (48)

The maximizer, y′′, at Eq. (47) is derived by noting that the
objective in Eq. (46) is maximized when y′′ ∝ y and the
magnitude of y′′ is limited to ε by the indicator function. The
next term F ∗

2 is

F ∗
2 (~z) = max

~z′

{
~zT~z′ − F2(~z′)

}
(49)

= max
~z′

{
~zT~z′ − λ

ν
‖(w|~z′|)‖1

}
. (50)

Now we substitute the polar decompositions ~z = zẑ and ~z′ =
z′ẑ′, where z, z′ are non-negative scalar images and ẑ, ẑ′ are
spatial unit-vector images. Since w and z are non-negative,
we obtain

F ∗
2 (~z) = max

z′∈[0,∞)N

{
zT z′ − λ

ν
‖(wz′)‖1

}
(51)

= max
z′∈[0,∞)N

{
zT z′ − λ

ν
wT z′

}
(52)

= δE∞(λw/ν) (|~z|) . (53)

In going from Eq. (50) to Eq. (51), we note that the second
term in the objective does not depend on ẑ′ and, fixing z′ and
allowing ẑ′ to vary, the objective function is maximized when
the spatial-unit-vectors in ẑ′ point in the same direction as ẑ,
i.e. ẑ′ = ẑ. The indicator function at the last line comes about
from considering two cases regarding the coefficient of z′ in
Eq. (52): if all components of z− λw/ν are non-positive the
objective function is maximized at z′ = 0 where its value is
zero; otherwise if one component of z−λw/ν is positive the
objective function can be made arbitrarily large. Equivalently,
the coefficients of z/(λw/ν) can be compared to 1: if the
maximum coefficient, i.e. ‖z/(λw/ν)‖∞, is less than 1 then
the maximization problem yields 0; otherwise, it yields ∞.

Combining the terms,

F ∗(y,~z) = yT g + ε‖y‖2 + δE∞(λw/ν) (|~z|) . (54)

D. Derivation of proxσ[F ∗](y,~z)
Next we compute proxσ[F ∗

1 ](y):

proxσ[F ∗
1 ](y) = (55)

arg min
y′

{
y′T g + ε‖y′‖2 +

1
2σ
‖y − y′‖22

}
= arg min

y′

{
ε‖y′‖2 +

1
2σ
‖y′ − y + σg‖22

}
, (56)

by completing the square and ignoring terms independent of
y′. From the symmetry of the objective function in Eq. (56),
the minimizer lies on the segment between y′ = 0 and y′ =
y − σg, so we can convert to a scalar minimization problem
over non-negative y′ as follows:

proxσ[F ∗
1 ](y) = (57)

=
y − σg
‖y − σg‖2

× (58)

arg min
y′∈[0,∞)

{
εy′ +

1
2σ

(y′ − ‖y − σg‖2)2
}

= max(‖y − σg‖2 − σε, 0)
y − σg
‖y − σg‖2

. (59)
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Now we compute proxσ[F ∗
2 ](~z):

proxσ[F ∗
2 ](~z) = (60)

arg min
~z′

{
δE∞(λw/ν) (|~z′|) +

1
2σ
‖~z− ~z′‖22

}
= ẑ arg min

z′

{
δE∞(λw/ν) (z′) +

1
2σ
‖z− z′‖22

}
, (61)

by making the same polar decomposition substitutions as in
Eq. (51), because the indicator term does not depend on ẑ′

and the quadratic term is minimized when ẑ′ = ẑ for fixed
z′. The objective function of Eq. (61) is separable and the
result of the minimization is a component-wise thresholding
of z by the maximum value of the corresponding component
of λw/ν:

proxσ[F ∗
2 ](~z) = ẑmin(λw/ν, z) (62)

= ~z (λw/ν)/ max(λw/ν, z). (63)

The form of the prox in Eq. (63) is equivalent to that of Eq.
(62), but it is computationally more convenient because the
computation of ẑ in Eq. (62) needs to avoid potential division
by zero. The denominator of Eq. (63), on the other hand, is
strictly positive.
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